

QTY-200

Forensic DNA Technical Leader Approval

Revision # 02

Issue Date

SOP #

Dora E Walker

03/01/2023

Quantification Setup

1. Purpose

This document describes the procedure for setting up a manual quantification plate using Quant Trio (ThermoFisher) and Quantiplex Pro (Qiagen) and running it on the Quant Studio 5 (ThermoFisher) instrument.

2. Summary

Directions for making Standard Dilution Sets, Virtual Standard Curves, and manually setting up a quantification plate are given for Quant Trio and Quantiplex Pro. Additionally, includes instructions for starting a run and exporting data on the Quant Studio 5 instrument.

3. Procedure

Creation of a Virtual Curve

1. Each newly received lot of quantification standard requires Quality Control assessment of a standard curve. Create a dilution series and quant in triplicate following the directions below. Upon obtaining a passing standard curve, save the dilution set as a Virtual Curve as the **(Kit)(Lot #)-(Expiration Date)**.

2. Standard Dilution Sets

Quant Trio

Standard	Concentration (ng/µL)	Volumes	Dilution factor
Std. 1	50.000	10μL [100ng/μL stock] + 10μL	2×
		Quantifiler™ THP DNA dilution buffer	
Std. 2	5.000	10μL [Std. 1] + 90μL Quantifiler™ THP	10×
		DNA dilution buffer	
Std. 3	0.500	10μL [Std. 2] + 90μL Quantifiler™ THP	10×
		DNA dilution buffer	
Std. 4	0.050	10μL [Std. 3] + 90μL Quantifiler™ THP	10×
		DNA dilution buffer	
Std. 5	0.005	10μL [Std. 4] + 90μL Quantifiler™ THP	10×
		DNA dilution buffer	

Quantiplex Pro

Standard	Concentration (ng/µL)	ntration (ng/µL) Volumes			
Std. 1	50.000	Undiluted DNA			
Std. 2	5.000	5.000 5µL [Std. 1] + 45µL QuantiTect Nucleic Acid Dilution Buffer			
Std. 3	0.500	5μL [Std. 2] + 45μL QuantiTect Nucleic Acid Dilution Buffer	10×		
Std. 4	0.050	5μL [Std. 3] + 45μL QuantiTect Nucleic Acid Dilution Buffer	10×		
Std. 5	0.005	5μL [Std. 4] + 45μL QuantiTect Nucleic Acid Dilution Buffer	10×		

QTY-200

02

Issue Date

Revision #

SOP #

Forensic DNA Technical Leader Approval

An EValler.

03/01/2023

3. Passing Standard Curve Requirements

Quantifiler™ Trio Targets	Typical Slope (range)	Average Slope
Small Autosomal (SA)	-3.0 to -3.6	-3.3
Large Autosomal (LA)	-3.1 to -3.7	-3.4
Y Target (Y)	-3.0 to -3.6	-3.3

Quantiplex Pro Targets	Typical Slope (range)	Average Slope	
Human, Y, Degradation	-3.0 to -3.6	-3.3	

Documentation

- Open a DOC-307 Case Chronicle document and save a copy to the Batches in Progress folder on the Shared Drive as the Batch ID with the following naming format: YYMMDDAnalyst Initials (Example: 230215SW)
 - a. If previous extractions were performed for this batch, then open the previously saved document.
- 2. Click on the Quant tab of the saved Case Chronicle.
- 3. Enter the following information into the header of the document:
 - a. Batch ID
 - b. Performed by
 - c. Date of quantification
 - d. Reagent Lot Numbers
- 4. Ensure the correct kit is selected from the drop-down list.
- 5. Add the number of Samples to the Sample field of the header.
 - a. This information is used by the DOC-307 Case Chronicle to calculate the volume of master mix components and should include the total number of samples, reagent blanks, calibrator, and NonTemplate Control, An additional 15% is automatically added for overage to account for pipetting error.
- 6. Enter the Calibrator and NonTemplate Control into field 1A and 1B, respectively.
- 7. Enter the sample identification numbers for all samples and reagent blanks that will be quantitated in the batch layout in the subsequent fields.

QTY-200

Revision # 02

Issue Date

Forensic DNA Technical Leader Approval

An EWallhu

SOP #

03/01/2023

	1	2	3	4	5	6	7	8	9	10	11	12	
А	Pos Control												
в	Neg Control												
с	IMF-23- 00001-01-01- A												
D	IMF-23- 00001-02-01- A												
E	IMF-23- 00001-RB												
F	IMF-23- 00002-01-01- A												
G	IMF-23- 00002-RB												
н													
	Notes:												
													-

- 8. Enter a note into the Notes field, for any extracts combined prior to quantification.
 - a. The note must include the sample identification numbers for the combined samples.
- 9. To create an import file:
 - a. Click on the Import Tab for the kit being utilized.
 - b. Click on File > Save As
 - c. Save the file as a .txt file with the batch ID as the file name.

Manual Quant Plate Setup

1. Prepare a fresh $5.00 \text{ ng}/\mu\text{L}$ DNA standard for use as a calibrator for the quantification plate according to the table below.

Kit	Volumes
Quant Trio	10μL [Std. 1] + 90μL Quantifiler™ THP DNA dilution buffer
Quantiplex Pro	5μL [Std. 1] + 45μL QuantiTect Nucleic Acid Dilution Buffer

- a. The calibrator will have a 1-week expiry date and must be tracked in the Prepared Reagent Log.
- 2. Prepare the reaction reagents by thawing completely, then vortex 3 to 5 seconds and centrifuge briefly before opening.
- 3. Create a master mix for each sample/reagent blank/calibrator/non-template control, including overage, and mix thoroughly by vortexing.
 - a. Refer to the header of the Quant tab of DOC-307 Case Chronicle for exact volumes suitable for the number of samples included in the batch.

Kit	Reaction Mix Volume	Primer Mix Volume		
Quantifiler™ Trio	10 μL	8 μL		
Investigator [®] Quantiplex [®] Pro	9 μL	9 μL		

QTY-200

Revision # 02

Issue Date

Forensic DNA Technical Leader Approval

03/01/2023

SOP #

4. Pipette 18 μL of the master mix into each reaction well that will be used.

A. E. Kallen

- 5. Add 2 μL of sample/calibrator/non-template control (NTC) to the appropriate wells, according to the layout in the DOC-307 Case Chronicle on the Quant tab.
 - a. TE is used for the NTC.
- 6. Seal the reaction plate with an Optical Adhesive Cover.
- 7. Centrifuge the plate to remove any bubbles.

Quant Studio 5 Run

- 1. Load the plate
 - a. Touch ^(a) to eject the instrument drawer.
 - b. Load the plate onto the plate adapter so that well A1 of the plate is in the top-left corner of the plate adapter.

Note: Do not remove the black plate adapter before loading a plate.

c. Touch 🍥 to close the instrument drawer.

CAUTION! PHYSICAL INJURY HAZARD. The instrument does not have a sensitive stopping function while closing the drawer. Be sure plate is loaded properly and keep hands and lab coats clear.

- 2. Software
 - a. For Quant Trio, use the HID Real-Time PCR Analysis Software.
 - i. Log in using *IMF* and click **OK**
 - ii. Click the Quantifiler Trio button.
 - iii. Create plate layout
 - 1. If a plate layout import file has been created, import the template by clicking **File** and selecting **Import**.
 - 2. To enter the plate layout manually:
 - a. Enter plate name in the Experiment Name field.
 - b. Click Plate Setup and add samples.
 - c. Click Assign targets and sample locations and assign well locations by clicking on the well and then checking the box next to the desired sample.
 - iv. Click Start Run.
 - b. For Quantiplex, use the Quant Studio Design & Analysis Software.
 - i. Create a New Experiment by template by clicking the dropdown arrow next to Create New Experiment and clicking Template.
 - ii. Import "Quantiplex Pro.edt" from the desktop.
 - iii. Import the plate layout by clicking "File" then "Import Plate Setup".
 - iv. Select the plate layout created during setup.
 - v. Add the plate name
 - vi. Click the Plate tab and assign wells.
 - vii. Click Start Run.
- 3. When the run ends, unload the plate.
 - d. Touch ^(a) to eject the instrument drawer.
 - i. Note: If the instrument does not eject the plate, contact Support.
 - e. Remove the plate.

QTY-200

Forensic DNA Technical Leader Approval

02 Revision # **Issue Date**

An E Walker

03/01/2023

SOP #

- i. **CAUTION! PHYSICAL INJURY HAZARD**. During instrument operation, the plate temperature can reach 100°C. Allow it to cool to room temperature before handling.
- f. Touch ⁽ to close the instrument drawer.

Transfer EDS files

- 1. EDS files are saved automatically upon completion of the run but can be manually exported if changes are made within the software after the run.
 - a. To transfer manually from the laptop:
 - i. Click Export
 - ii. Ensure the Results button is checked, and all other options are unchecked
 - iii. Selected the Export Destination
 - iv. Name the file with the batch ID.
 - v. Choose the file type as a .xls file.
 - vi. Click the Export button.
 - b. To transfer manually from the instrument home screen:
 - i. Touch ⁽ Settings ► Run History
 - ii. Touch Transfer File.
 - iii. Select the data destination for the EDS files.
 - iv. Navigate to and select a folder.
 - v. Touch OK.
 - vi. Touch Transfer.

4. References

Investigator[®] Quantiplex[®] Pro Handbook Quantifiler[™] HP and Trio DNA Quantification Kits USER GUIDE QuantStudio[™] 5 Real-Time PCR Instrument (for Human Identification) USER GUIDE QuantStudio[™] Design and Analysis Software USER GUIDE

5. Definitions

EDT File: "Template" file. This houses the template for the assay (use caution to not overwrite template files) **EDS File:** "Result" file. This is the output of a run and is considered the raw data file to be utilized by interpretation software.

Import File / Plate Layout: A .txt file that identifies the sample/control locations within a plate